ARYI-BIS (THIOARYL) SULFONIUM SALTS AND THEIR USE FOR THE PREPARATION OF S-ARYL-EPISULFONIUM SALTS

A.S.Gybin*, W.A.Smit, V.S.Bogdanov Zelinsky Institute of Organic Chemistry, Leninsky prospect 47, Moscow, USSR M.Z.Krimer, J.B.Kalyan, Institute of Chemistry, Academicheskaya 3, Kishinev, USSR

Summary: \blacktriangle new method for the preparation of S-arylepisulfonium salts has been developed and several compounds of this type have been isolated.

The most direct route to S-arylepisulfonium ions (S-aryl ESI's) involving the reaction of alkenes with cationoid reagents formally depicted as arylsulfenium salts ArS^+Y^- , 1, has been successfully used for the preparation of various S-aryl ESI's as the stable solutions¹. However the inherent instability of 1² has precluded their proper identification and made the whole procedure rather inconvenient.

Here we report: (i) the preparation of a new class of electrophilic reagents, aryl-bis(thioaryl)sulfonium salts, $\operatorname{ArS}^+(\operatorname{SAr})_2 Y$, $\operatorname{Ar=C_6H_5}(a)$; 4-CH₃C₆H₄(b); 4-ClC₆H₄(c); 2,4,6-(CH₃)₃C₆H₂(d); Y = SbCl₆ or SbF₅Cl; (ii) the effective use of these salts for the conversion of alkenes into their respective S-aryl ESI's and (iii) the first isolation of several S-aryl ESI's in a free state.

The preparation of 2a-d is achieved easily according to the reactions shown in Scheme 1³ by mixing of the equimolar quantities of the reagents dissolved in CH_2Cl_2 or liquid SO₂ at - 60°. The reactions are complete in a few minutes⁴ and produce 2a-d quantitatively⁵.

22-d

Scheme 1

a) ArSCI + SbCI5 (or SbF5) - ArS(SAr)2 SbCI6 (or SbF5CI)

b)
$$3(ArS)_2 + 3SbCl_5 \rightarrow 2ArS(SAr)_2 SbCl_6 + SbCl_3$$

 $Ar \sim S. Y^{-}$
 $Ar \sim S. Y^{-}$
 $Ar \sim S. Ar$
 $Ar \sim S. Ar$
 $Ar \sim S. Ar$
 $Ar = SAr$
 $Ar = SAr$
 $Ar = SAr$

The coloured solution of 2a-d so prepared could be stored at -70° for at

least several hours⁵; addition of cooled Et₂O allowed us to isolate salts 2c,d as solids in 50-60% yields⁵; however these salts proved to be rather unstable even at -20⁰⁵.

A noteworthy feature of the CMR spectra of 2a-d at -60° (see Table 1) is the appearance of a single set of 13 C-aryl signals, their positions being indicative of the presence of a positively charged center adjacent to the aryl residue⁶. Such a pattern could be accounted for by postulation of a cyclic triaryltrithianium structure A for these compounds, or ascribed to averaging due to the rapid degenerate equilibration B (Scheme 1). At present the former alternative seems to be more plausible⁷ especially in view of the additional temperature-variable CMR studies⁸.

<u>CMR-spectra</u> of	20-4+			Table 1
Salt (aryl)	28-d* 13 ₀₋₁	¹³ 0- 2,6	¹³ c-3,5	13 ₀₋₄
2a (C ₆ H ₅)	124.3	136.7	132.7	136.7
2b (4-CH ₃ C ₆ H ₄)	121.8	136.3	133.3	147.8
2c (4-C1C ₆ H ₄)	122.0	137•5	132.1	142.3
2d (2,4,6-(CH3)3C6H2)	123.4	146.4	132.8	148.4

*Spectra were recorded at 15.08 MHz with Brucker WP-60 FT spectrometer for 0.7-0.8 M solutions in CH2012 at -60°; 5 (ppm) are given relative to TMS (external).

The ability of 2a-d to serve as S-aryl transfer agents has been established by their reactions with cis-cyclooctene (3) and norbornene (4). For both alkenes the arylsulfenylation proceeds smoothly even at -60° upon introduction of alkene into a solution of 2a-d (1:1 molar ratio). The resulting S-aryl ESI's 5 or 6 are easily isolated in a free state⁹ by addition of cooled Et_20 , followed by filtration under argon, additional washing with ether (to remove the traces of ArSSAr) and n-pentane and drying in vacuo.

Gabama O

		Scheme 2	
		Yield	(%) m.p.(⁰ C)
\frown \frown	(5a	85	99–100
$\left(\right) + 2a - d \longrightarrow \left(+ S - Ar \right)^{2}$	SbC16 50	96	108-110
	50	95	97-99
3 5	54	99	115-116
۰٬۰۰۰ ۲=	$SbCl_{6} \begin{cases} \frac{5a}{5b} \\ \frac{5b}{5c} \\ \frac{5d}{5d} \\ SbF_{5}Cl \\ \frac{5c}{5c} \end{cases}$	98	89 -91
Λ			
$f + 2 = d \rightarrow f + S$	- 62	93	68-69
+za-a Ar sbci	6 <u>6c</u>	97	72-74
	6d	9 8	75-76

Prior to this study no reports on the isolation of free S-aryl ESI's have appeared¹⁰.

The structure of ESI's 5 and 6 has been ascertained both by NMR data and the results of the quenching experiments. Thus PMR spectra of 5a-d and 6b-d

contain typical 2H-signals of the CH $\overline{}_{5}$ CH fragment at 4.6-4.7 ppm (as multiplets for 5 and broadened singlets for 6)¹¹.

CMR studies with 5a-d and 6b-d $(I = SbCl_6)$ proved to be difficult due to their low solubility. Therefore more soluble ESI's have been prepared: 5d $(I = BF_4)$ and norbornene-S-methylepisulfonium salt, 7, $(I = SbF_6)^{12}$. The CMR spectra¹³ of both these compounds contain only four ¹³C-signals of cycloaliphatic carbons (for 5d; 77.0, 26.1, 26.2, 28.2; for 7: 63.1, 38.8, 25.2, 18.5) as should be the case for the plane symmetrical structure of these ESI's. The near-identity of PMR spectra of ESI's with various counter-ions $(I = BF_4, SbCl_6$ or SbF₅Cl⁻) allows us to consider this conclusion as generally valid for the whole set of the prepared ESI's.

The quenching of all salts 5 and 6 with $(CH_3)_4NOAc-AcOH$ mixture proceeds in a manner usual with other ESI¹ and produces 1,2-acetoxy-arylthio-adducts as the major products (yields are 88-99% for 5 and 60-80% for 6)¹⁴.

This method of alkene arylsulfenylation seems to be of general value. Thus it was shown that interaction of 2d with such alkenes as 2,3-dimethyl-2-butene, cyclohexene, 1-methylcyclohexene and styrene produces the respective S-aryl ESI's as revealed by their ready conversion into the respective acetoxy-adducts (yields 70-90%) upon quenching with acetate anion^{14,15}.

We believe that the proposed simplified procedure for the preparation of S-aryl ESI's will greatly facilitate the elaboration of synthetically useful methods based on the well-documented ability of these compounds¹ to react as "masked" carbonium ion equivalents. Studies along these lines are now in progress.

References

- a) E.A.Vorobieva, M.Z.Krimer, W.A.Smit, <u>Izvestia Akad.Nauk, Ser.chim.</u>,2832 (1974); b) W.A.Smit, M.Z.Krimer, E.A.Vorobieva, <u>Tetrahedron Lett</u>., 2451 (1975).
- 2. Reagents 1 have been generated in situ by the action of AgBF₄ or AgSbF₆ on ArSHal. Earlier the formation of 1 as unstable electrophilic species has been suggested by N.Kharasch et al.(see, for example N.Kharasch, C.B. Buess, W.King, J.Amer.Chem.Soc., 75, 6035 (1953); see also D.Owsley, G.Helmkamp, J.Amer.Chem.Soc., 89, 4558 (1967) and references given therein).
- 3. These reactions are essentially similar to those described previously for the preparation of CH₂S⁺ (SCH₃)₂ SbCl₅⁻: a) G.Capozzi, C.Lucchini, G.Modena, F.Rivetti, <u>J.Chem.Soc.</u>, <u>Perkin II</u>, 900 (1975); b) R.Weiss, C.Schliers, <u>Synthesis</u>, 323 (1976). To our knowledge no attempts have been made to apply these procedures to the synthesis of other S-alkyl- or S-aryl transferring reagents.
- 4. CMR spectra recorded 30 min after the mixing of the reagents indicated the absence of the signals of the starting compounds.

- 5. To determine the yields of 2a-d and to evaluate their stability the data on the yields of the respective S-aryl ESI's in the reactions with cis--cyclooctene were used.
- 6. In CMR spectra of 2a-d signals of ¹³C-1 are shifted 12-15 ppm upfield while those of ¹³C-2,4,6 are shifted 6-8 ppm downfield relative to the respective ¹³C-signals in model uncharged compounds (ArSSAr, ArSCH₃).
- While the formation of cyclic trithian has never been observed and the latter was considered to be unlikely formulation for the structure of CH₃S⁺(SCH₃)₂ salt (see ref.3a), recent ab initio calculations of the model reaction (HS)₂ + E⁺ give some support for the feasibility of such bridged structure (J.A.Pappas, <u>J.Amer.Chem.Soc.</u>, 101, 561 (1979)).
 CMR spectra of 2a-d recorded at -90° show the presence of a double set
- 8. CMR spectra of 2a-d recorded at -90° show the presence of a double set of closely similar ¹³C-signals this phenomenon being interpreted as the result of the freezing out of syn-anti equilibration in A. More detailed discussion of the observed reversible changes will be given in a full paper.
- 9. All salts are isolated as finely crystalline powders with sharp m.p.'s (decomp.). They could be stored unchanged at least for several days at +20° (for 5a-d) or 0° (for 6b-d). Yields are given for the isolated compounds; satisfactorily analytical date were obtained for all salts.
- Up to now only several stable S-CH₃ ESI's have been isolated (e.g.: G.Ca-pozzi, O.DeLucchi, G.Modena, <u>Tetrahedron Lett.</u>, 2063 (1975); P.Raynolds, Z.Zonnebelt, S.Bakker, R.M.Kellogg, <u>J.Amer.Chem.Soc.</u>, <u>96</u>, 3146 (1974).
- 11. PMR spectra were recorded at 100 MHz with Tesla BS 497 spectrometer for CD_2CN solutions at -40° (for 5a-d) or $(CD_3)_2CO$ solutions at -95° (for 6b-d); δ (ppm) are given relative to TMS (internal). The respective signals of other protons are also observed in all the spectra.
- 12. These salts were prepared using previously described methods^{1b} and were isolated as analytically pure hygroscopic compounds in 40-50% yields.
- 13. CMR spectra were recorded at 15.08 MHz for CH_2Cl_2 solutions at +20°; δ (ppm) are given relative to TMS (external).
- 14. Yields refer to the isolated products. Satisfactory analytical data were obtained for all adducts. The vicinal position of OAc and S-ar groups has been ascertained by the appropriate double-irradiation PMR experiments.
- 15. The isolation of S-aryl ESI in a free state was successful only for 2,3-dimethyl-2-butene (yield 84%, satisfactory analytical data).

(Received in UK 20 November 1979)